Uncommon Systems of Equations
نویسندگان
چکیده
A system of linear equations L over Open image in new window is common if the number monochromatic solutions to any two-colouring asymptotically at least a random . The line research on systems was recently initiated by Saad and Wolf. They were motivated existing results for specific (such as Schur triples arithmetic progressions), well extensive Sidorenko graphs. Building earlier work, Fox, Pham Zhao characterised equations. For two or more equations, only sporadic known.
منابع مشابه
On Some Fractional Systems of Difference Equations
This paper deal with the solutions of the systems of difference equations $$x_{n+1}=frac{y_{n-3}y_nx_{n-2}}{y_{n-3}x_{n-2}pm y_{n-3}y_n pm y_nx_{n-2}}, ,y_{n+1}=frac{y_{n-2}x_{n-1}}{ 2y_{n-2}pm x_{n-1}},,nin mathbb{N}_{0},$$ where $mathbb{N}_{0}=mathbb{N}cup left{0right}$, and initial values $x_{-2},, x_{-1},,x_{0},,y_{-3},,y_{-2},,y_{-1},,y_{0}$ are non-zero real numbers.
متن کاملAn efficient technique for solving systems of integral equations
In this paper, the wavelet method based on the Chebyshev polynomials of the second kind is introduced and used to solve systems of integral equations. Operational matrices of integration, product, and derivative are obtained for the second kind Chebyshev wavelets which will be used to convert the system of integral equations into a system of algebraic equations. Also, the error is analyzed and ...
متن کاملCoupled systems of equations with entire and polynomial functions
We consider the coupled system$F(x,y)=G(x,y)=0$,where$$F(x, y)=bs 0 {m_1} A_k(y)x^{m_1-k}mbox{ and } G(x, y)=bs 0 {m_2} B_k(y)x^{m_2-k}$$with entire functions $A_k(y), B_k(y)$.We derive a priory estimates for the sums of the rootsof the considered system andfor the counting function of roots.
متن کاملABS methods for nonlinear systems of algebraic equations
Abstract This paper gives a survey of the theory and practice of nonlinear ABS methods including various types of generalizations and computer testing. We also show three applications to special problems, two of which are new.
متن کاملSolving systems of nonlinear equations using decomposition technique
A systematic way is presented for the construction of multi-step iterative method with frozen Jacobian. The inclusion of an auxiliary function is discussed. The presented analysis shows that how to incorporate auxiliary function in a way that we can keep the order of convergence and computational cost of Newton multi-step method. The auxiliary function provides us the way to overcome the singul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Trends in mathematics
سال: 2021
ISSN: ['2297-024X', '2297-0215']
DOI: https://doi.org/10.1007/978-3-030-83823-2_98